Neuropathic Pain and Pain Treatments – Focus on Over the Counter Agents

Sean Mackey, M.D., Ph.D.
Chief, Pain Management Division
Associate Professor
Stanford University
Department of Anesthesia
Division of Pain Management
http://paincenter.stanford.edu
smackey@stanford.edu

Disclosures – Funding Sources
- National Institutes of Neurological Diseases and Syndromes
 - R01 NS053961
- National Institutes of Drug Abuse (NIDA)
 - R21 DA026092
 - K24 DA029262
- National Institutes of Diabetes and Digestive and Kidney Diseases
 - U01 DK052316
- NCCAM
 - PO1 pending
- Rosekran’s Pain Research Endowment
- Redlich Pain Research Endowment

Overview
- Impact of neuropathic pain
- Taxonomy of pain
- Characteristics and mechanisms of neuropathic pain
- Tools to manage neuropathic pain with a focus on over the counter agents
Experiences With Pain

- >50% of Americans live with chronic or recurrent pain
- 20% suffer chronic pain (ongoing pain ≥3 months). Over 60 million Americans
- Many of the chronic pain conditions started with an acute injury or surgery.
- More than 300 million prescriptions for analgesics (125 million for Vicodin) are written each year for pain.
- #1 reason people out of work
- Indirect/direct medical expenses $200B

Morb Mortal Wkly Rep., 2002;51:948-50

Pain – definition

"An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage"

Types of Pain

- Nociceptive
 - Activation of nociceptors in cutaneous and deep musculoskeletal tissues.
 - Accurately localize pain to the site of pathology; it may be felt in superficial cutaneous or deeper musculoskeletal structures
- Visceral
 - Poorly localized.
 - Often associated with nausea, vomiting, and diaphoresis.
 - Ischemia, infiltration, compression, distention, and torsion or stretching of thoracic, abdominal, and pelvic viscera.
- Neuropathic
Neuropathic Pain

- IASP Definition of Neuropathic Pain: "Pain initiated or caused by a primary lesion or dysfunction in the nervous system."
- Pain resulting from lesions of the peripheral nerves has sometimes been termed deafferentation pain.
- Pain resulting from injury to the spinal cord or brain, especially when complicating cerebrovascular, demyelinating, or traumatic CNS injury is involved, is usually termed central pain.

Neuropathic Pain - Deleterious Effects

- Negative emotions
 - Depression
 - Anxiety
- Poor Sleep
- Decreased quality of life
- Weight loss

Estimated Prevalence of Neuropathic Pain in the US*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painful diabetic neuropathy</td>
<td>600,000</td>
</tr>
<tr>
<td>Postherpetic neuralgia</td>
<td>500,000</td>
</tr>
<tr>
<td>Cancer-associated</td>
<td>200,000</td>
</tr>
<tr>
<td>Spinal cord injury</td>
<td>120,000</td>
</tr>
<tr>
<td>Causalgia and reflex</td>
<td>100,000</td>
</tr>
<tr>
<td>Sympathetic dystrophy (CRPS)</td>
<td>100,000</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>50,000</td>
</tr>
<tr>
<td>Phantom pain</td>
<td>50,000</td>
</tr>
<tr>
<td>Poststroke</td>
<td>30,000</td>
</tr>
<tr>
<td>HIV-associated</td>
<td>15,000</td>
</tr>
<tr>
<td>Trigeminal neuralgia (tic douloureux)</td>
<td>100,000</td>
</tr>
<tr>
<td>Low back pain-associated</td>
<td>2,100,000</td>
</tr>
<tr>
<td>Total (excluding back pain)</td>
<td>1,775,000</td>
</tr>
<tr>
<td>Total (including back pain)</td>
<td>3,865,000</td>
</tr>
</tbody>
</table>

How we have thought about pain

Approaches to Understanding and Treating Pain

- Etiological Factors
- Pain Symptoms
- Pain Syndromes

Approaches to Understanding and Treating Pain

- Etiological Factors
- Pain Symptoms
- Pain Syndromes

- Post Herpetic Neuralgia
Approaches to Understanding and Treating Pain

- Etiological Factors
- Pain Mechanisms
- Pain Symptoms
- Pain Syndromes

Pain – Where does it all start and why is it bad for our patients?

Neuroanatomy of Pain Pathways
Peripheral vs Central Mechanisms of Neuropathic Pain: Experimental Effects

<table>
<thead>
<tr>
<th>Peripheral Effects</th>
<th>Central Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ectopic and spontaneous discharge</td>
<td>• Central sensitization</td>
</tr>
<tr>
<td>• Nonsynaptic conduction</td>
<td>• Spinal reorganization</td>
</tr>
<tr>
<td>• Alterations in ion channel expression</td>
<td>• Cortical reorganization</td>
</tr>
<tr>
<td>• Collateral sprouting of primary afferent neurons</td>
<td>• Changes in inhibitory pathways</td>
</tr>
<tr>
<td>• Sprouting of sympathetic neurons in dorsal root ganglion</td>
<td>• Changes in glial cell functioning</td>
</tr>
<tr>
<td>• Nociceptor sensitization</td>
<td></td>
</tr>
<tr>
<td>• Neurogenic inflammation</td>
<td></td>
</tr>
</tbody>
</table>

Mechanism:
Increased Na channel expression
Locally activates membrane of neuroma/DRG

Ectopic activity in primary afferents following injury

![Diagram of pain pathway](Image)

Mechanism:
- Increased Na channel expression
- Locally activates membrane of neuroma/DRG

Central Mechanisms of Neuropathic Pain
Peripheral vs Central Mechanisms of Neuropathic Pain: Experimental Effects

<table>
<thead>
<tr>
<th>Peripheral Effects</th>
<th>Central Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ectopic and spontaneous discharge</td>
<td>Central sensitization</td>
</tr>
<tr>
<td>Nonsynaptic conduction</td>
<td>Spinal reorganization</td>
</tr>
<tr>
<td>Alterations in ion channel expression</td>
<td>Cortical reorganization</td>
</tr>
<tr>
<td>Collateral sprouting of primary afferent neurons</td>
<td>Changes in inhibitory pathways</td>
</tr>
<tr>
<td>Sprouting of sympathetic neurons in dorsal root ganglion</td>
<td>Changes in glial cell functioning</td>
</tr>
<tr>
<td>Nociceptor sensitization</td>
<td></td>
</tr>
<tr>
<td>Neurogenic inflammation</td>
<td></td>
</tr>
</tbody>
</table>

Central Sensitization (Secondary Hyperalgesia)

- Repeated impulse activity in C nociceptive neurons produces sensitization of spinothalamic tract neurons over time
- Previously subthreshold inputs reach threshold and initiate action potential (alldynia)
- Increases in spontaneous activity
- Spinal and supraspinal mechanisms
- Enlargement of the area in periphery where stimulus will activate neurons

Loss of Inhibitory Interneuron Function

- Tonic activity in C nociceptors
- Enhanced postsynaptic effects by NMDA-receptor sensitization
Glial Cells and Neuropathic Pain

- Parenchymal (resident) microglia, perivascular microglia, astrocytes and oligodendrocytes, constitute > 70% of the total cell population in the brain and spinal cord.
- Key neuromodulatory, neurotrophic and neuroimmune elements in the CNS.

Current Opinion in Investigational Drugs 2008 9(7):726-734

Functional Magnetic Resonance Imaging (fMRI)

A method of observing brain activation

Brain Regions Involved in Pain Perception “Pain Matrix”

Somatosensory Cortex, Anterior Cingulate Cortex, Prefrontal Cortex, Insular Cortex, Thalamus, Amygdala

Right arm amputation below elbow

Cortical Reorganization in Complex Regional Pain Syndrome
- Participants: 12 upper limb CRPS
- Methods: Non-painful air puffs to digit 1 and 5 and lower lip
- Cortical responses recorded with MEG
- Results: Shrinkage of hand representation contralateral to affected side
- Reorganization correlated with amount of pain and mechanical hyperalgesia

Younger JW, Shen Y, Goddard G, Mackey S. PAIN

Temporomandibular (TMD) Pain Alters Gray Matter in the Brain
- 15 women with TMD pain
- 15 age/gender matched controls

Maihofner C. Neurology. 2003; 61: 1707-1715
Neuropathic Pain Associated with Gray Matter Reductions

- Reductions noted in:
 - Mid-posterior Cingulate
 - S2
 - Posterior Insula
 - Left S1

Resting State Brain Networks – Abnormalities in Neuropathic Pain

- No significant differences between groups in visual or default-mode networks.
- CRPS patients had significantly more connectivity in “salience” network (Seeley, 2007)
 - Dorsal ACC and insula (salience network) but ALSO cerebellum, and S1

Changes in CNS Motor Systems in CRPS

- 12 CRPS patients, 12 healthy controls
- Kinematic analysis during target reaching and grasping
- CRPS patients showed prolonged target phase
- fMRI and finger tapping task
- CRPS patients showed reorganization of central motor circuits
 - Increased activity of primary motor and SMA
 - Regressed against tapping performance

Maihofner, et al., Brain (2007), 130, 2671–2687
Therapeutic Approaches to Neuropathic Pain

Chronic pain management

- Multidisciplinary treatment
- Pharmacologic
- Psychological
- Physical/Occupational Therapy

Neuropathic Pain Management – Physical Therapy, Occupational Therapy, Rehab

- Setting goal oriented paced activities
- Aerobic exercises, weight loss
- Re-education (e.g. body mechanics, back school, ergonomics)
- Muscle group strengthening (e.g. flexion, extension, range motion)
- Transcutaneous electrical nerve stimulation
Neuropathic Pain Management – Psychological and Behavioral Therapy

- Positive reinforcement for healthy behavior
- Time contingent instead of pain contingent pain management
- Spousal involvement
- Modification of:
 - Meaning of pain and disability
 - Expectations regarding control of pain
 - Catastrophizing
- Respondent treatment
 - Hypnosis
 - Visualization
 - Relaxation
 - Biofeedback

Chronic Pain Management: Procedural Treatment

- Trigger point injections (local/Botox)
- Nerve blockade
- Epidural steroids
- Medial branch blocks/facet injections/RF rhizotomy
- Sympathetic blockade
- Peripheral nerve blockade
- Neurolytic blockade – chemical and RF
- Spinal drug delivery systems
- Spinal cord stimulation

Pharmacologic Management of Neuropathic Pain

<table>
<thead>
<tr>
<th>Antidepressants</th>
<th>Amitriptyline, imipramine, desipramine, nortriptyline, duloxetine, venlafaxine, SSRIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticonvulsants</td>
<td>Carbamazepine, oxcarbazepine, gabapentin, lamotrigine, phenytoin, topiramate, levetiracetam, pregabalin</td>
</tr>
<tr>
<td>Antiarrhythmics</td>
<td>Mexiletine</td>
</tr>
<tr>
<td>Topical formulations</td>
<td>Capsaicin, lidocaine, aspirin</td>
</tr>
<tr>
<td>Analgesics</td>
<td>NSAIDs, Cox inhibitors, tramadol, opiates</td>
</tr>
<tr>
<td>Others</td>
<td>Levodopa, ketamine, dextromethorphan</td>
</tr>
</tbody>
</table>
Pharmacologic Approach to Treatment

Importance of Randomized Clinical Trials

- Patient with trigeminal post-herpetic neuralgia treated with:
 - Alcohol injection into supra-orbital nerve
 - Division of the sensory root
 - Alcohol injection into trigeminal ganglion
 - Stellate ganglion block
 - Electroconvulsive therapy
 - Extirpation of contralateral then ipsilateral sensory cortex
 - Prefrontal lobotomy

Over the Counter Agents for Neuropathic Pain
Acetyl-L-Carnitine and Neuropathies

- Diabetic peripheral neuropathy
- Chemotherapy-induced neuropathy
- HIV neuropathy

In mitochondria ensures availability of acetyl-co-A for elimination of toxic metabolites.
- Involved in acetylation of proteins- tubulin- role in neuronal protection;
- Enhances neuronal NGF response and possibly regulation of gene expression

Acetyl-L-Carnitine in Diabetic Neuropathy

Double-blind placebo-controlled RCT in 333 subjects, 1 yr followup
- 1 gm IM for 10 d, 2 gm orally for 355 d
- Nerve conduction velocity (NCV; motor and sensory) and amplitude primary outcome measure, pain secondary

- 12 month NCV increased in active group in all nerves, decrease or no change in placebo; 6 month similar trend
- 199 pts had pain at baseline. 39% decrease at 12 month

De Grandis and Minardi Drugs R&D 2002; 3:223

ALC and Diabetic Neuropathy

Sima et al, Diabetes Care 2005;28:89
ALC in other NP pain states

- HIV-associated neuropathy:
 - Open label studies 1500 mg x2/d for up to 33 m improvement in neuropathy (?pain) in 76%
 - Small, 3 wk study- 0.5-1 g iv/im daily, pain intensity decreased in 10, no change in 5, 1 worse

- Chemotherapy-induced neuropathy
 - Open label 8 wk trial in 25 pt, total neuropathy score improved in 23 pt.

References:

Vitamin E for Prevention of Cisplatin Neurotoxicity

- Neurotoxicity is the major dose-limiting toxicity for cisplatin
- Peripheral sensory polyneuropathy, ototoxicity, focal encephalopathy
 - Signs and symptoms often not reversible
 - Mechanism of toxicity not fully understood
 - Mechanisms: free radical damage to nerves; possible vitamin E depletion

References:
J Clin Oncol 2003;21:927-931

Vitamin E for Prevention of Cisplatin Neurotoxicity

- Medication: Vitamin E as alpha-tocopherol
- Dose: 300 mg (447 IU)/day
- Protocol: Vitamin E administered before cisplatin therapy and continued for 3 months after cessation of cisplatin treatment
- Patients were randomized to receive vitamin E plus cisplatin (Group 1) or cisplatin alone (Group 2)
- Median time between start of vitamin E and cisplatin was 4 days (range, 1 to 8 days)

References:
J Clin Oncol 2003;21:927-931
Vitamin E for Prevention of Cisplatin Neurotoxicity

- 27 patients with solid tumors (15 lung; 3 ovarian; 2 rhinopharinx, 2 urethral; and 1 each gastric, testicular, esophageal, ethmoidal, tongue) completed six cycles of cisplatin therapy
 - Neurotoxicity: Group 1 was 30.7% vs. 85.7% in Group 2
 - Severity of neurotoxicity was 79% less in Group 1 compared to Group 2
 - Overall there was a 64% decreased risk in developing neurotoxicity with Vitamin E
 - No differences between groups in response to cisplatin treatment were noted (eg, tumor weight inhibition, tumor growth delay, life span)

J Clin Oncol 2003;21:927-931

Alpha-Lipoic Acid (ALA)

- Improves nerve blood flow, distal nerve conduction and increases endoneurial glucose uptake and energy metabolism
- Has also been used to reduce oxidative damage
- Approved in Germany for diabetic neuropathy
- S/E mild - headache, skin rash, stomach upset at high doses (600 mg/d) and possible hypoglycemia

$12.95/60 cap

Halat CE & Dennehy KM
J Am Board Fam Pract 2003;16:47-57

Alpha-Lipoic acid and neuropathy

- Meta-analysis of 4 PCRT in diabetic N, n=1,258
- 600 mg ALA IV for 3 wk
- Improvement in symptom score starting day 8 of Rx
- Smaller studies- similar symptomatic improvement
- Normalizes plasma nitrates and nitrites - a surrogate for NO production, increased NO= better neuronal circulation

ALA for Treatment of Oxaliplatin-Induced Polyneuropathy

- Dose-limiting toxicity of oxaliplatin is cumulative peripheral sensory neuropathy (PNP)
- Peripheral neuropathic pain symptoms:
 - Paresthesias with or without functional impairment of the extremities
- Develop in 10-18% of patients when a cumulative dose of about 800 mg/m2 is reached

J Clin Oncol 2002;20:3359-3361

ALA for Treatment of Oxaliplatin-Induced Polyneuropathy

- 15 patients with oxaliplatin-induced cumulative PNP
- Treatment:
 - Alpha-lipoic acid 600 mg I.V. weekly for 3-5 weeks
 - Followed by 600 mg orally three times daily until full recovery or for a maximum of 6 months
- 8 of 15 patients (53%) experienced reduction in severity of symptoms
 - Median response time: 4 weeks (range 3-12 wks)
 - Median treatment duration: 2 months (range 1-4 months)

J Clin Oncol 2002;20:3359-3361

Essential fatty acids

- Omega-6 FA: gamma-linolenic acid
 - Evening primrose oil, borage and black currant, Efamol oil
 - 2 RCTs in diabetic neuropathy
- Omega-3 FA: eicosopentaenoic and docosahexaenoic acid - Fish oil
 - Reduced pain in RA, inflammatory bowel disease, dysmenorrhea, and musculoskeletal injury

Coste et al. Cellular and Molecular BiologyTM 2004;50:845
Goldberg RJ, Katz J. Pain 2007;129:210
Stanford Pain Management Center

- Major tertiary comprehensive Pain Management Center
- Started in 1989.
- Over 10,000 patient visits (FY08)
- 18 Clinical Pain Faculty
 - Anesthesiology
 - Internal Medicine
 - Physiatry
 - Neurology
 - Addiction Medicine
 - Acupuncture
- 3 Pain Psychologists Faculty
- 9 Community ACF
- 7 Clinical ACGME pain fellows
- Nursing
 - Clinic Manager
 - 5 Office Staff

Common Pain Conditions We Treat

- Neuropathic pain
 - Post traumatic, post surgical
 - Post-herpetic neuralgia
 - Complex regional pain syndrome/RSD
 - Diabetic neuropathy
- Back and neck pain
- Headache
- Abdominal and pelvic pain
- Cancer pain
- Work related

Unique Aspects of Stanford Pain Center

- True comprehensive interdisciplinary clinical program with national and international reputation
- State of the art therapies with proven outcomes
- Only in patient program in Western US (SCIPP)
- Collaborative translational research with world class resources
- Integration of research programs with clinical care – part of the culture
 - Research
 - Clinical
Summary

- Neuropathic pain is a tremendous burden on the individual and society.
- Neuropathic pain represents a complex mixture of peripheral and central mechanisms.
- Multidisciplinary treatment approaches are the most effective.
- A number of over the counter agents have demonstrated efficacy in neuropathic pain.
- Look for the Institute of Medicine report on Pain on June 29th!!!